

Roll No: Subject Code: RAS401

BTECH (SEM IV) THEORY EXAMINATION 2023-24 MATHEMATICS-III

TIME: 3 HRS M.MARKS: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 7 = 14$

Printed Page: 1 of 2

Atter	2x7 = 14							
a	Integrate $f(z) = x^2 + ixy$ from A(1,1) to B(2,4) along the curve $x = t$, $y = t^2$.							
b	In a certain distribution, the first four moments about the point $x = 4$ are -1.5, 17, -30 & 308. Find the moment about mean.							
c	Explain diagonally dominant system of linear equations and rewrite the following into diagonally dominant form $9x+4y+z=-17$ $x-2y-6z=14$ $x+6y=4$							
d	Apply Euler's method to solve $\frac{dy}{dx} = e^x + xy$, $y(0) = 0$ to compute $y(0.1)$ for h=0.1							
e	Prove that $hD = -\log(1-\nabla)$.							
f	Evaluate $\int_{1}^{2} e^{-\frac{x}{2}} dx$ using four intervals.							
g	If Fourier Transform of $e^{-x^2} = \sqrt{\pi}e^{-(p^2/4)}$ then find Fourier Transform of e^{-x^2} cos4x.							

SECTION B

2. Attempt any *three* of the following:

 $7 \times 3 = 21$

	Find the Taylor's and Laurent's series which represent the function					
a	$f(z) = \frac{z^2 - 1}{(z+2)(z+3)}$ when					
	(i) $ z < 2$ and (ii) $2 < z < 3$.					
	The following results were obtained from marks in mechanics and engineering					
	mathematics in an examination					
	Mechanics(x) Engg. Mathematics(y)					
b	Mean 47.5 39.5 S.D. 16.8 10.8					
_	S.D. 16.8 10.8					
	Given that $r=.95$. Find both the regression equations. Also estimate value of y for $x=30$.					
	101 X=30.					
c	Use Newton Raphson method to find a root of the equation $x^3 - 3x - 5 = 0$.					
	Find the internal time and the wait for the full series of the					
	Find the interpolating polynomial for the following data.					
d	$\begin{bmatrix} x & -3 & -1 & 0 & 3 & 5 \\ x & 3 & 3 & 3 & 3 & 3 & 3 \end{bmatrix}$					
	f(x) -30 -22 -12 330 3458					
	Solve by Z-transform: $y_{k+1} = 7y_k + 10x_k$					
e	$x_{k+1} = y_k + 4x_k$; $y_0 = 3, x_0 = 2$					

Roll No: Subject Code: RAS401

BTECH (SEM IV) THEORY EXAMINATION 2023-24 MATHEMATICS-III

TIME: 3 HRS M.MARKS: 70

SECTION C

3. Attempt any *one* part of the following:

 $7 \times 1 = 7$

Printed Page: 2 of 2

110011	upt any one part of the following.	/ A I — /
(a)	Evaluate $\oint_C \frac{3z^2 + z}{z^2 - 1} dz$, where C is the circle $ z = 2$.	
(b)	Evaluate $\int_0^{2\pi} \frac{\cos 3\theta d\theta}{5 + 4\cos \theta}$	

4. Attempt any *one* part of the following:

 $7 \times 1 = 7$

(a)	Fit a second degree parabola to the following data by Least Squares method:									
		X	1	2	3	4	5			
		у	1090	1220	1390	1625	1915			

(b) Define level of significance. Show that in a poisson distribution with unit mean, mean deviation about mean is (2/e)times the standard deviation.

5. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Using Lagranges interpolation formula, find polynomial which takes the values 3, 12, 15, -21 when x has the values 3, 2, 1, -1.
- (b) Using Newton-Raphson method, find real root of equation $3x = \cos x + 1$ correct to four decimal places.

6. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- Solve the following system of linear equations by Crout's method: 2x + 3y + z = 9 x + 2y + 3z = 63x + y + 2z = 8
- (b) Find an approximate value of the $\log_e 5$ by calculating to four decimal places by Simpson's (1/3) rd rule $\int_0^5 \frac{dx}{4x+5}$ dividing the range into 10 equal parts.

7. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- Using Fourier sine integral, show that $\int_{0}^{\infty} \frac{(1 \cos \pi \lambda) \sin x \lambda \, d\lambda}{\lambda} = \begin{cases} \frac{\pi}{2} & \text{when } 0 < x < \pi \\ 0 & x > \pi \end{cases}$
- (b) Describe Fourier Sine transform of the function $F(x) = \frac{b^{-ax}}{x}$, a>0. Hence evaluate Fourier Sine transform of the function $F(x) = \frac{1}{x}$.