

Roll No: Subject Code: KEE403

BTECH (SEM IV) THEORY EXAMINATION 2023-24 NETWORKS ANALYSIS & SYNTHESIS

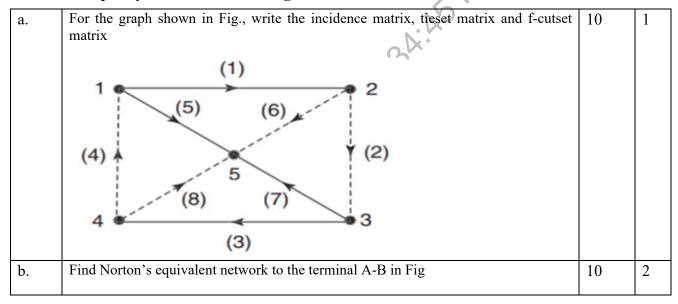
TIME: 3 HRS M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

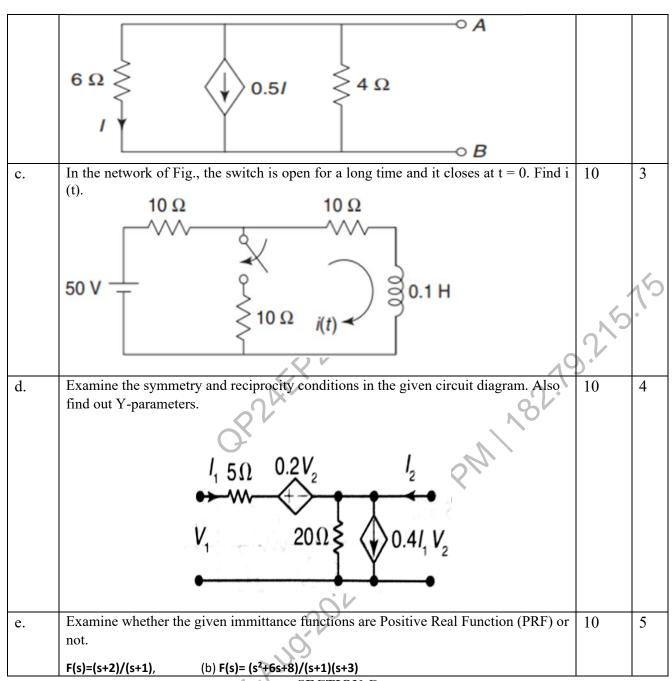

Printed Page: 1 of 4

Q no.	Question	Marks	CO
a.	What is a basic loop and a basic cut set in graph theory?	02	1
b.	Describe the concept of duality in graph theory.	02	1
c.	State and explain the Superposition theorem.	02	2
d.	Describe the maximum power transfer theorem.	02	2
e.	What is the role of initial conditions in transient circuit analysis?	02	3
f.	Explain the time constant for RL and RC network.	02	3
g.	Differentiate between driving point and transfer functions.	02	4
h.	Describe the Z parameters of a two-port network.	02	4
i.	What are the properties of LC driving point functions?	02	5
j.	Describe the fundamental differences between passive and active filters.	02	5

SECTION B

2. Attempt any three of the following:

 $3 \times 10 = 30$



				Sub	ject	Coc	de: I	KEE	403	,
Roll No:										

Printed Page: 2 of 4

BTECH (SEM IV) THEORY EXAMINATION 2023-24 NETWORKS ANALYSIS & SYNTHESIS

TIME: 3 HRS M.MARKS: 100

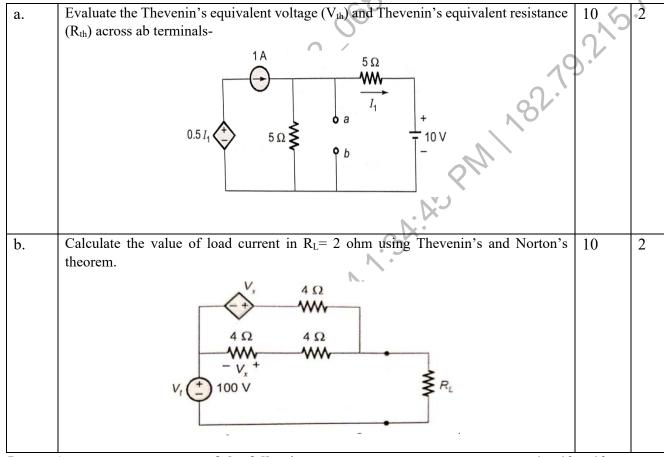
SECTION C

3. Attempt any *one* part of the following:

 $1 \times 10 = 10$

a.	Illustrate the use of tie set matrix to find the current i in the given circuit-	10	1
	$ \begin{array}{c c} 1\Omega & 2\Omega \\ \downarrow & 2\Omega \\ \downarrow & 1\Omega \\ \hline 3\Omega & 1\Omega \end{array} $		

					Pri	inte	l Pa	ge: 3	of 4	
				Sub	ject	Coc	de: I	KEE	403	1
Roll No:										


BTECH (SEM IV) THEORY EXAMINATION 2023-24 NETWORKS ANALYSIS & SYNTHESIS

TIME: 3 HRS M.MARKS: 100

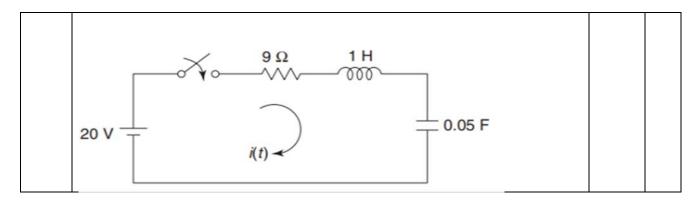
b.	The reduced incidence matrix of an oriented graph is	10	1
	$A = \begin{bmatrix} 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & -1 & -1 \\ -1 & 0 & 0 & 1 \end{bmatrix}$ (a) Draw the graph (b) How many trees are possible for this graph? (c) Write the		
	Tie set and Cut set matrices		

4. Attempt any *one* part of the following:

 $1 \times 10 = 10$

5. Attempt any *one* part of the following:

 $1 \times 10 = 10$


a.	Find the Laplace transform (LT) of unit impulse signal, e ^{-at} u(t), unit ramp, and unit parabolic functions.	10	3
b.	In the network of Fig., the switch is closed at $t = 0$. Obtain the expression for current i (t) for $t = 0$	10	3

Printed Page: 4 of 4
Subject Code: KEE403
Roll No:

BTECH (SEM IV) THEORY EXAMINATION 2023-24 NETWORKS ANALYSIS & SYNTHESIS

TIME: 3 HRS M.MARKS: 100

6. Attempt any *one* part of the following:

 $1 \times 10 = 10$

a.	Explain the cascade and series interconnection among the network and describe the symmetricity and reciprocity for the resultant network.	10	4
	On		1")
b.	Find Y-parameters, h-parameter and Z-parameter and ABCD parameter for the network given below	10	4
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.1	
	V_1 $\geq 2 \Omega$ V_2		

7. Attempt any *one* part of the following:

 $1 \times 10 = 10$

a.	Indicate which of the following functions are either R-C, R-L or L-C impedance	e 10	5
	functions and give reason for your answer.		
	(a) $Z(s) = \frac{s^3 + 2s}{s^4 + 4s^2 + 3}$		
	(b) $Z(s) = \frac{s^2 + 6s + 8}{s^2 + 4s + 3}$		
	(c) $Z(s) = \frac{s^2 + 4s + 3}{s^2 + 6s + 8}$		
	(d) $Z(s) = \frac{s^2 + 5s + 6}{s^2 + s}$		
	(e) $Z(s) = \frac{s^4 + 5s^2 + 6}{s^3 + s}$		
b.	Derive the relation of cut off frequency, L and C for constant K type high pass filter.	10	5
υ.	Derive the relation of cut off frequency, L and C for constant R type fight pass filter.	10	