

				Subject Code: KEE402					
Roll No:									

BTECH (SEM IV) THEORY EXAMINATION 2023-24 ELECTRICAL MACHINES-I

TIME: 3 HRS M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

Printed Page: 1 of 2

Q no.	Question	Marks	CO
a.	Define leakage flux.	02	1
b.	Define magnetic reluctance.	02	1
c.	How the direction of rotation of the dc shunt motor can be changed?	02	2
d.	List the different types of losses in D.C machine	02	2
e.	Write the application of stepper motor.	02	3
f.	What is the need for starter in a DC motor?	02	3
g.	Define all day efficiency of Transformer?	02	4
h.	How to minimized hysteresis and eddy current losses in transformer?	02	4
i.	Why transformer is not working on dc supply?	02	5
j.	What are distinguishing features of delta-star and delta-delta 3-phase connections?	02	5

SECTION B

2. Attempt any three of the following:

 $3 \times 10 = 30$

a.	For an electromagnetic system show that mechanical work done is equal to the area		1
	enclosed between the two magnetization curve at open and closed position of the		
	armature and the ψ -I locus during instantaneous armature movement.		
b.	A 230 volts DC Shunt motor on no-load runs at a speed of 1200RPM and draw a	10	2
	current of 4.5 Amperes. The armature and shunt field resistances are 0.3 ohm and 230		
	ohms respectively. Calculate the back EMF induced and speed, when loaded and		
	drawing a current of 36 Amperes.		
c.	Write the construction and operation of DC Servo motor and write their application.	10	3
d.	Develop the equivalent circuit of a single phase transformer referred to primary and	10	4
	secondary		
e.	Obtain the generalized conditions for parallel operation of Transformer. Also, explain	10	5
	the effect of load sharing due to impedance variation between transformers during		
	parallel operation.		
	an and A is a		

SECTION C

3. Attempt any *one* part of the following:

 $1 \times 10 = 10$

a.	Derive an expression for dynamical equation of electromechanical system.	10	1
b.	Derive an expression for the torque in a doubly excited system having salient pole type	10	1
	of stator as well as rotor.		

4. Attempt any *one* part of the following:

 $1 \times 10 = 10$

a.	Explain the armature reaction and commutation in detail for a DC Machine.	10	2
b.	A 400 Volts DC Shunt Motor has a no load speed of 1450 RPM, the line current being 9 Amperes. At full loaded condition, the line current is 75 Amperes. If the shunt field resistance is 200 Ohms and armature, resistance is 0.50hm. Evaluate the full load		2
	speed.		

					Pri	ntec	l Pa	ge: 2	2 of 2
				Subject Code: KEE402					402
Roll No:									

BTECH (SEM IV) THEORY EXAMINATION 2023-24 ELECTRICAL MACHINES-I

TIME: 3 HRS M.MARKS: 100

5.	Attempt any <i>one</i> part of the following: 1 x 10	= 10	
a.	Explain Swinburne's test on DC machines? What are its advantages and disadvantages?	10	3
b.	Describe Hopkinson test in detail. What are its advantages and disadvantages?	10	3
,	Attempt any <i>one</i> part of the following: 1 x 10	= 10	
a.	Explain the back-to-back method of testing for two identical single-phase transformers.	10	4
b.	A 500 KVA Transformer has a core loss of 2200 watts and a full load copper loss of 7500 watts. If the power factor of the load is 0.90 lagging, Evaluate the full load	10	4
	efficiency and the KVA load at which maximum efficiency occurs	_ 10	
•	Attempt any <i>one</i> part of the following: 1 x 10	= 10	
a.	A three-phase transformer bank consisting of three 1-phase transformers is used to step down the voltage of a 3-phase, 6600 V transmission line. If the primary linecurrent is 20A, calculate the secondary line voltage, line current, and output kVA for the connections of star-delta (Y- Δ). Turns ratio is 24.	10	5
b.	Discuss the open–Delta connection in 3-Φ transformers with reference to the VA rating. Draw the connection diagram of the open-delta connection and the phasor diagram corresponding to a balanced load of lagging power factor. State the applications	100	5
	302A V. 30: 00 PM		
	23-Aug-201		