				Sub	ject	Coc	de: I	KEF	2401	
Roll No:										Ì

Printed Page: 1 of 2

BTECH (SEM IV) THEORY EXAMINATION 2023-24 DIGITAL ELECTRONICS

TIME: 3 HRS M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

Q no.	Question	Marks	CO
a.	Convert the binary number (11001) ₂ into (i) Gray code (ii) Excess-3 Code.	2	1
b.	Compute the given subtraction using 2's complement (100010) ₂ -(11010) ₂	2	1
c.	Show the function $A + B\overline{C}$ in canonical SOP form.	2	2
d.	Differentiate serial adder and parallel adder.	2	2
e.	The group of bits 11001 is serially shifted (right-most bit first) into a 5-bit parallel output shift-register with an initial state 01110. What is the contains After three clock pulses, the register contains	2	3
f.	Differentiate between synchronous and asynchronous counters.	2	3
g.	Explain State Reduction and assignment for synchronous sequential circuits	2	4
h.	Compare Mealy and Moore state machine.	2	4
i.	Define term power dissipation in logic families.	2	5
j.	Differentiate RAM and ROM.	2	5

SECTION B

2. Attempt any three of the following:

		10.7	
a.	Simplify the following Boolean function using K-map and also draw the	10	1
	simplified logic circuit using NAND gate only.		
	$F(A,B,C,D,E) = \sum_{m} (0,1,2,4,7,8,12,14,15,16,17,18,20,24,28,30,31)$		
b.	Implement the function $Y(A, B, C, D) = \sum_{m} (0,1,2,5,8,13,14)$ using 8:1	10	2
	multiplexer. Consider A, B, C as the select lines.		
c.	Illustrate the register with its classification and explain shift register with	10	3
	help of example.		
d.	An asynchronous sequential circuit with two excitation function with two	10	4
	feedback loop is given as:		
	$Y_1 = xy_1 + \overline{x}y_2; \qquad Y_2 = x\overline{y}_1 + \overline{x}y_2$		
	Derive the transition table & obtain the flow table.		
e.	Explain PLA and PAL. Implement the following Boolean function with a	10	5
	PLA.		
	$F_1(x, y, z) = \sum (0,1,2,4);$ $F_2(x, y, z) = \sum (0,5,6,7)$		

SECTION C

3. Attempt any *one* part of the following:

a.	Simplify the following Boolean function using K-map and also draw the simplified logic circuit. $f(A,B,C,D) = \sum_{m} (0,1,5,6,12,13,14) + d(2,4)$	10	1
b.	Demonstrate Ex-NOR gate with the help of	10	1
	(i) NAND-NAND Logic only and (ii) NOR-NOR Logic gates only		

Printed Page: 2 of 2
Subject Code: KEE401
Roll No:

BTECH (SEM IV) THEORY EXAMINATION 2023-24 DIGITAL ELECTRONICS

TIME: 3 HRS M.MARKS: 100

4. Attempt any *one* part of the following:

	a.	Explain the design of a Full Subtractor, with its truth table and Boolean	10	2
		expression.		
ſ	b.	Draw and Explain 2-bit magnitude comparator. Also represent output with	10	2
		the help of logic diagram.		

5. Attempt any *one* part of the following:

a.	Express Johnson Counter with its clock sequence for unique state.	10	3
b.	Design RS flip -flop using NAND-NAND logic and obtain its	10	3
	characteristic equation and excitation table. Explain how will you convert		
	it in D Flip-flop.		

6. Attempt any *one* part of the following:

a.	Implement the circuit defined by the following excitation and output	10	4
	functions with a NOR SR Latch. Also show the implementation with		
	NAND SR latch.		7,
	$Y = x_1 \overline{x_2} + (x_1 + \overline{x_2}) y; \qquad z = y$	10	
b.	Explain critical race, non-critical race conditions and race free state	10	4
	assignments with the help of suitable example.	レ	

7. Attempt any *one* part of the following:

a.	Explain basic structure of ECL logic family with the help of suitable example.	10	5
b.	Demonstrate universal gates using PMOS and NMOS logic family.	10	5
	21. Rug: 202A 1:395.		