

Roll No: Subject Code: KEC402

Printed Page: 1 of 3

BTECH (SEM IV) THEORY EXAMINATION 2023-24 ANALOG CIRCUITS

TIME: 3 HRS M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1.	Attempt all questions in brief.					
Q no.	Question	Marks	CO			
a.	Define stability factor.		1			
b.	Explain the reason behind choosing the common emitter configuration as an amplifier.		1			
c.	Define gain cross over frequency and phase cross over frequency.	02	2			
d.	Explain the factors behind the roll of gain at lower and higher frequency.	02	2			
e.	Explain the Barkhausen's criterion.	02	3			
f.	Differentiate between positive and negative feedback.	02	3			
g.	List the properties of an ideal current mirror.	02	4			
h.	Define common mode rejection ratio.	02	4			
i.	Write the relation between quality factor and bandwidth.	02	5			
j.	List the properties of an ideal operational amplifier.	02	5			

SECTION B

	5251201127		
2.	Attempt any three of the following:	3 x 10	=30
a.	Calculate input impedance (R_i) , output impedance (R_0) , voltage gain	10	T
	(A_v) , open circuit voltage gain (A_{v0}) , overall voltage gain (G_v) , short	-0.	
	circuit current gain (A_I) for common emitter amplifier with emitter	8	
	resistance (R_E) .		
b.	Explain the various feedback topologies, with their circuit models and	10	2
	properties.		
c.	Derive the frequency of oscillation for Hartley oscillator along with the	10	3
	condition for sustained oscillations. Also calculate the values of		
	components if the value of the capacitor is . 01 μf for 1 KHz frequency		
	of oscillations.		
d.	Derive the transfer characteristics of differential amplifier with required	10	4
	mathematical expressions.		
e.	Identify the nature of the filter shown in figure. Justify the nature	10	5
	through the transfer function and location of zeros. Also calculate the		
	value of R_2 to achieve the cut off frequency $5KHz$ for the following		
	circuit.		
	21.200		

				Printed Page: 2 of 3						,
				Subject Code: KEC40						,
Roll No:										

BTECH (SEM IV) THEORY EXAMINATION 2023-24 ANALOG CIRCUITS

TIME: 3 HRS

M.MARKS: 100 V_i R_1 V_0 R_1 V_0 R_1 R_2 R_2 R_1 R_2 R_1 R_2 R_2 R_3 R_4 R_4 R

SECTION C

3.	Attempt any <i>one</i> part of the following:	1 x 10	= 10
a.	Discuss the various amplifier models in detail along with their models	10	1
	and properties.		
b.	Explain the various biasing schemes with their advantages and	10	1
	disadvantages. Also derive the stability factor for voltage divider		0) 1
	biasing.		

4.	Attempt any one part of the following:	0×10	= 10
a.	Discuss the advantages of negative feedback in detail with relevant	10	2
	mathematical expressions.		
b.	Discuss the working of class B power amplifiers with its efficiency and	10	2
	nonlinearity. Also discuss the remedy of nonlinear distortion associated		
	with class B power amplifier.		

5.	Attempt any <i>one</i> part of the following:	1 x 10	= 10
a.	Derive the frequency of oscillation for RC phase shift oscillator along	10	3
	with the condition for sustained oscillations.		
b.	Derive the frequency of oscillation for Wein bridge oscillator. Also	10	3
	calculate the value of 'C' required for to generate sinusoidal oscillations		
	of frequency 1 KHz in the circuit of the figure shown.		
	$1k\Omega$ $2.1k\Omega$		
	Vout		
	ξ 1kΩ		
	∮ _{1kΩ} c †		
	\$ 1000 kg		
	<u></u>		

Printed Page: 3 of 3
Subject Code: KEC402
Roll No:

BTECH (SEM IV) THEORY EXAMINATION 2023-24 ANALOG CIRCUITS

TIME: 3 HRS M.MARKS: 100

6.	Attempt any one part of the following:	1 x 10	= 10
a.	Calculate the common mode gain, differential mode gain, CMRR, and	10	4
	input resistance of a differential amplifier using BJT.		
b.	Discuss the basic principle of current mirrors. Also derive the relation	10	4
	of output current with reference current and output impedance of Wilson		
	current mirror.		

7.	Attempt any one part of the following:	1 x 10	= 10
a.	Design a circuit using a single operational amplifier for the following	10	5
	mathematical operations: $(V_1 \text{ and } V_2 \text{ are the available inputs})$		
	1) $V_{-} - V_{-} + 2V_{-}$		
	$2) V_0 = 4V_1 - 6V_2$		
b.	Discuss the circuit of wide band-pass active filter. Design a wide band	10	5
	pass filter having lower cut off frequency 3KHz, higher cut off		
	frequency 30 KHz and pass band gain of 12 dB.		C/V
			6
	000		7,2
	-9./		
	,QV		0).
		or	,
		0	
	G,	*	
		•	
	· C.		
	C: 5		
	2) $V_0 = 4V_1 - 6V_2$ Discuss the circuit of wide band-pass active filter. Design a wide band pass filter having lower cut off frequency 3KHz, higher cut off frequency 30 KHz and pass band gain of 12 dB.		