

|          |  |  |  | Sub | ject | Coc | le: k | (EC | (40) |
|----------|--|--|--|-----|------|-----|-------|-----|------|
| Roll No: |  |  |  |     |      |     |       |     |      |

# BTECH (SEM IV) THEORY EXAMINATION 2023-24 COMMUNICATION ENGINEERING

TIME: 3 HRS M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

#### **SECTION A**

### 1. Attempt all questions in brief.

 $2 \times 10 = 20$ 

Printed Page: 1 of 2

| Q no. | Question                                                          | Marks | CO |
|-------|-------------------------------------------------------------------|-------|----|
| a.    | Differentiate between continuous-time and discrete-time signal.   | 02    | 1  |
| b.    | Discuss the principles of VSB modulation.                         | 02    | 1  |
| c.    | How does angle modulation differ from amplitude modulation?       | 02    | 2  |
| d.    | Explain the difference between wideband and narrowband FM.        | 02    | 2  |
| e.    | Differentiate between discrete and continuous random variables.   | 02    | 3  |
| f.    | Draw characteristic curve of Additive white Gaussian noise (AWGN) | 02    | 3  |
| g.    | Discuss the advantages and limitations of pulse modulation.       | 02    | 4  |
| h.    | Describe the process of quantization in PCM.                      | 02    | 4  |
| i.    | Analyze the advantages of PSK in digital communication systems.   | 02    | 5  |
| j.    | Explain the applications of MSK in communication systems.         | 02    | 5  |

#### **SECTION B**

### 2. Attempt any three of the following:

 $3 \times 10 = 30$ 

| modulation in communication systems and the advantages of using amplitude              |   |
|----------------------------------------------------------------------------------------|---|
| 11.                                                                                    |   |
| modulation.                                                                            |   |
| b. Explain the spectral characteristics of PM signals .A phase modulation system 10    | 2 |
| has a modulation sensitivity of 0.1 rad/V. If the modulating signal is a 2 V peak      |   |
| sinusoid at 500 Hz, calculate the peak phase deviation of the PM signal.               |   |
| c. Explain the impact of noise on amplitude modulation systems. How does noise 10      | 3 |
| affect the quality and reliability of AM signals?                                      |   |
| d. Describe the sampling process in digital signal processing. Explain the Nyquist- 10 | 4 |
| Shannon sampling theorem and its importance in signal reconstruction.                  |   |
| e. Write down the difference between BPSK and QPSK, Explain QPSK generation 10         | 5 |
| and detection with its signal constellation diagram                                    |   |

#### SECTION C

### 3. Attempt any *one* part of the following:

 $1 \times 10 = 10$ 

| a. | Explain the concept of SSB modulation and its advantages over DSB-SC                     | 10 | 1 |
|----|------------------------------------------------------------------------------------------|----|---|
|    | modulation. Discuss the generation of SSB signals using the Hilbert transform.           |    |   |
| b. | Discuss the principles of DSB-SC modulation. Given a message signal m(t)=e <sup>-t</sup> | 10 | 1 |
|    | $u(t)m(t)$ and a carrier signal $e(t)=cos(2\pi f_c t)$ . Compute the DSB-SC modulated    |    |   |
|    | signal and its Fourier transform.                                                        |    |   |

## 4. Attempt any *one* part of the following:

 $1 \times 10 = 10$ 

| a. | Explain the process of generating an FM signal using a voltage-controlled       | 10 | 2 |
|----|---------------------------------------------------------------------------------|----|---|
|    | oscillator (VCO).                                                               |    |   |
| b. | Derive the mathematical representation of a PM signal. Discuss the applications | 10 | 2 |
|    | of PM in modern communication systems.                                          |    |   |



|          |  |  |  | Sub | ject | Coc | le: ŀ | KEC | 401 |
|----------|--|--|--|-----|------|-----|-------|-----|-----|
| Roll No: |  |  |  |     |      |     |       |     |     |

Printed Page: 2 of 2

# BTECH (SEM IV) THEORY EXAMINATION 2023-24 COMMUNICATION ENGINEERING

TIME: 3 HRS M.MARKS: 100

| MLE: | 3 HRS M.M.                                                                                                                                                 | AKKS: 1         | <u>00                                   </u> |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------|
| •    | Attempt any one part of the following:                                                                                                                     | 1 x 10 =        | 10                                           |
| 1.   | Explain the concepts of pre-emphasis and de-emphasis in communication systems. Why are these techniques used, and how do they improve signal transmission? | 10              | 3                                            |
|      | Define the threshold effect in angle modulation systems. How does this effect impact the demodulation process?                                             | 10              | 3                                            |
|      |                                                                                                                                                            | 1 x 10 =        | 10                                           |
|      | Explain Differential Pulse Code Modulation and its advantages over PCM.                                                                                    | 10              | 4                                            |
| •    | Explain the principles of Pulse Amplitude Modulation and how it differs from                                                                               | 10              | 4                                            |
|      | Pulse Code Modulation.                                                                                                                                     |                 |                                              |
|      | Attempt any one part of the following:                                                                                                                     | $1 \times 10 =$ | 10                                           |
| 1    | Construct and explain the block diagram of Transmitter and receiver for a QAM.                                                                             | 10              | 5                                            |
|      | Derive the expression for probability of Error for binary phase shift keying.                                                                              | 10              | 5                                            |
|      | Derive the expression for probability of Error for binary phase shift keying.                                                                              |                 |                                              |
|      | 201                                                                                                                                                        |                 |                                              |