				Printed Page: 1 of Subject Code: KCS40			of 2			
				Sub	ject	Co	de: I	KCS	402	
Roll No:										

BTECH (SEM IV) THEORY EXAMINATION 2023-24 THEORY OF AUTOMATA AND FORMAL LANGUAGES

TIME: 3 HRS **M.MARKS: 100**

Note: 1. Attempt all Sections. If require any missing data; then choose suitably. SECTION A

1.	Attempt <i>all</i> questions in brief.					
Q no.	Question	Marks	СО			
a.	Design a FA to accept the string that always ends with 010.	02	1			
b.	With example defines "Automata".	02	1			
c.	Explain Chomsky Hierarchy	02	2			
d.	Write a regular expression for set of all strings such that number of a's divisible by 3 over $\Sigma = \{a,b\}$	02	2			
e.	Construct the CFG for the Language = $\{a^{3n} b^n n \ge 3\}$	02	3			
f.	Explain "Pumping Lemma" for Regular Languages.	02	3			
g.	What is PDA? Also write its transition function.	02	4			
h.	Draw the graphical representation two stack PDA.	02	4			
i.	Differentiate between Recursive & Recursive Enumerable Languages.	02	5			
j.	Explain Post Correspondence Problem with suitable example.	02	5			

	SECTION D		
2.	Attempt any three of the following:	3 x 10 =	= 30
a.	State and Prove Klein's Theorem. Also, explain its purpose with a suitable	10	20
	example		
b.	Write the procedure to convert a given CFG into equivalent grammar in CNF.		3
	Apply the procedure and convert the grammar with following production into CNF: $S{\rightarrow}ABD AC$ $A{\rightarrow}aA bAa a$ $B{\rightarrow}bbA aB AB$ $C{\rightarrow}aCa aD$ $D{\rightarrow}aD bC$	82.	
c.	Design a Turing machine for the language L=wcw/ $\{w \in \{a, b\}^*$.	10	5
d.	Construct a PDA "M" equivalent to grammar with following productions:	10	4
	$S \rightarrow AA, A \rightarrow aS / bS/a$		
	Also, check whether the string 'abaaaa' is in M or not		
e.	What are various points of difference between Moore & Mealy Machine?	10	1
	Explain the procedure to convert a moore machine into Mealy machine		

				SECTIONC				
3.	Attemp	ot any <i>one</i> pa	art of the fo	llowing:			1 x 10	=10
a.				nata equivalent 4 are final state	A whose	transition	10	1
		State/∑		Input				
			A	В				
		Q0	Q1	Q2				
		Q1	Q4	Q3				
		Q2	Q4	Q3				
		Q3	Q5	Q6				
		Q4	Q7	Q6				
		Q5	Q3	Q6				
		Q6	Q6	Q6				
		Q7	Q4	Q6				

Printed Page: 2 o											of 2	,		
								Sub	ject	Co	de: I	KCS	402	,
Roll No:														

ВТЕСН

(SEM IV) THEORY EXAMINATION 2023-24 THEORY OF AUTOMATA AND FORMAL LANGUAGES

TIME: 3 HRS

M.MARKS: 100

h. Decign EA for the following languages containing binary strings:

b.	Design FA for the following languages containing binary strings:	10	1
	(i) Every String accepted must end with "aa" or "bb".		
	(ii) Accepts all the strings with "ab" and $ w = 3 \pmod{4}$.		

4.	Attempt any one part of the following:	1 x 10 :	= 10
a.	Find the regular expression corresponding to the finite automata given below	10	2
	20,6 a (21) b (23) c		
b.	Prove that for all sets	10	2
	i) $(((S^+))^+$ ii) $(S+)^* = S^*$		

5.	Attempt any one part of the following:	1 x 10 =	= 10
a.	Define Greibach normal form for a CFG. Reduce the following CFG into GNF:	10	3
	$S \rightarrow AB, A \rightarrow BS a, B \rightarrow SA b$		
b.	State pumping lemma for context free language. Prove that the language L=	10	3
	$\{a^nb^nc^n \mid n>=0\}$ is not context free.		
			7.1

6.	Attempt any one part of the following:	1 x 10 =	= 10
a.	Generate CFG for the given PDA M is defined as $M = (\{q0, q1\}, \{0,1\}, \{x, z0\}, $	10	4
	δ , q0, z0, q1) where δ is given as follows:	92V	
	$\delta(q0,1,z0) = (q0,xz0)$		
	$\delta(q0,1,x) = (q0,xx)$		
	$\delta(q0,0,x) = (q0,x)$		
	$\delta (q0, \varepsilon, x) = (q1, \varepsilon)$		
	$\delta (q1, \varepsilon, x) = (q1, \varepsilon)$		
	$\delta(q1,0,x) = (q1,xx)$		
	$\delta (q1,0,z0) = (q1,\varepsilon)$		
b.	Construct a PDA from the following CFG. $G = (\{S, X\}, \{a, b\}, P, S)$ where the	10	4
	productions are		
	$S \rightarrow XS \mid \varepsilon, A \rightarrow aXb \mid Ab \mid ab$		

7.	Attempt any <i>one</i> part of the following:	1 x 10	= 10
a.	Design a Turing Machine for the language: $L=\{a^n b^n c^n \mid n>=1\}$	10	5
b.	Write short notes on: (i) Multidiamentional and Multitape Turing Machine (ii) Halting Problem	10	5