

				Sub	ject	Co	de: I	(A)	403
Roll No:									

Printed Page: 1 of 2

BTECH (SEM IV) THEORY EXAMINATION 2023-24 **MATHS-III**

TIME: 3 HRS **M.MARKS: 100**

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1.	Attempt all questions in brief.	2 x 10 :	= 20
Q no.	Question	Marks	СО
a.	Evaluate Laplace transform of t sin t.	02	1
b.	State shifting theorem of Laplace transform.	02	1
c.	Find Z transform of constant c.	02	2
d.	State Fourier transform.	02	2
e.	Define equivalence relation.	02	3
f.	Define abelian group.	02	3
g.	What is the role of contradiction property?	02	4
h.	Write the condition when a function is invertible.	02	4
i.	Define complemented lattice.	02	5
i.	State idempotent law.	02	5

Attempt any *three* of the following: 2.

Q no.	Question	Marks	CO
a.	Evaluate $L^{-1}\left(\frac{1}{s(s+1)(s+2)}\right)$.	10	1
b.	Determine the Fourier cosine transform of $\frac{1}{1+x^2}$.	10	2
c.	Show that every cyclic group is abelian.	10	3
d.	Solve the recurrence relation $a_n = 3a_{n-1}+2$ with condition $a_0 = 1$	10	4
e.	Define CN form. Obtain conjunctive normal form of the following Boolean	10	5
	function: $f(x,y) = (x'y + y'x + y'x')$		

Attempt any one part of the following: **3.** $1 \times 10 = 10$

Q no.	Question	Marks	CO
a.	Determine the Laplace transform of a periodic function $f(x) = t/T$, (saw –	10	1
	tooth wave of period T).		
b.	Solve the differential equation	10	1
	$\frac{d^2t}{dx^2} + t = sint$, where $x(0) = 1$ and $x(0) = -1$.		
	dx^2		

4. Attempt any *one* part of the following: $1 \times 10 = 10$

Q no.	Question	Marks	CO
a.	State and prove change of scale property of Fourier transform.	10	2
b.	Discuss the Z transform of $\cos \alpha k$, $k \ge 0$.	10	2

Roll No: Subject Code: KAS403

Printed Page: 2 of 2

BTECH (SEM IV) THEORY EXAMINATION 2023-24 MATHS-III

TIME: 3 HRS M.MARKS: 100

5.	Attempt any one part of the following:	$1 \times 10 = 10$	
Q no.	Question	Marks	CO
a.	Determine the following equivalence:	10	3
	$(p \to q) \to t \cong (p \land \sim q) \longrightarrow t.$		
b.	Show that the structure $\{0, 1, 2, 3, 4\}$ along with operation $+_5$ forms an	10	3
	abelian group.		

6.	Attempt any one part of the following:		
Q no.	Question	Marks	CO
a.	Use principal of mathematical induction to show that	10	4
	$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$		
b.	Among 100 students, 32 study maths, 20 study physics, 45 study	10	4
	biology, 15 study maths and biology, 7 study maths and physics, 10		
	study physics and biology and 30 do not study any of the three subjects		
	then determine:		
	(i) The number of students studying all three subjects		(Ω)
	(ii) The number of students studying exactly one of the three		1
	subjects	.2	*
		OX	

7.	Attempt any one part of the following:	1 x 10 =	= 10
Q no.	Question	Marks	CO
a.	Consider the set $D_{30} = \{1, 2, 3, 5, 6, 10, 15, 30\}$ and the relation divides	10	5
	(/) be a partial ordering relation on D_{30} .		
	(a) Draw the Hasse diagram of D_{30} with relation divides.		
	(b) Determine all upper bounds and lower bounds of 5 and 10		
b.	Using k-map, minimize the following Boolean expression	10	5
	A'B'CD + A'B'CD' + AB'C'D' + AB'CD'		
	09-Ruo: 202A		