

1.

g.

Roll No: Subject Code: BCS402

Printed Page: 1 of 3

BTECH

(SEM IV) THEORY EXAMINATION 2023-24 THEORY OF AUTOMATA AND FORMAL LANGUAGES

TIME: 3 HRS M.MARKS: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

tten	SECTION A ppt <i>all</i> questions in brief. $2 \times 7 = 14$
a.	Give the mathematical definition of DFA. Differentiate between NFA and
b.	DFA. Construct Deterministic Finite Automata (DFA) to accept string that always
c.	ends with 101 over alphabet $\Sigma = \{0,1\}$ Give regular expressions that represent the language (L), which has all binary
	strings having two consecutive 0s and two consecutive 1s over the alphabet $\Sigma = \{0, 1\}$.
d.	Compute the Language generated by the given CFG G = ({S}, {a, b}, P, S} where P is defined by:
e.	$\{S \rightarrow SS, S \rightarrow ab, S \rightarrow ba, S \rightarrow \epsilon\}$ Let G be the grammar $S \rightarrow 0B \mid 1A$
	$A \rightarrow 0 \mid 0S \mid 1AA$ $B \rightarrow 1 \mid 1S \mid 0BB$ Determine the leftmost derivation for the string 00110101
f.	Explain the concept of two stack PDA. Give an example of a language that is accepted by two stack PDA but not accepted by normal one stack PDA.

SECTION B

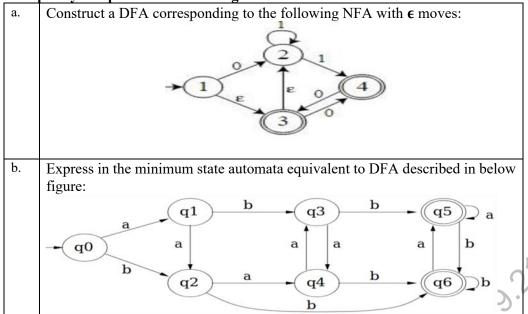
Explain Multi Tape Turing Machine.

2. Attempt any three of the following: 7 x 3 = 21

a.	Construct a Finite automata (DFA) which accepts all binary numbers whose
	decimal equivalent is divisible by 4 over $\Sigma = \{0, 1\}$.
b.	Compute the regular expression using Arden's Theorem for the following
	DFA.
	° • • • • • • • • • • • • • • • • • • •
	- Q1
	1 0
	1 (92)
c.	Write an equivalent left linear grammar from the given right linear grammar.
	S→0A 1B
	A→0C 1A 0
	B→1B 1A 1
	C→0 0A
d.	Differentiate between DPDA and NPDA. Construct a PDA that accepts
	language $L = \{a^n b^n \mid n \ge 1\}.$
e.	Differentiate between Deterministic Turing machine and Non-Deterministic
	Turing machine. Design a Turing machine for the language L={ww w ε (a +
	b)*}.

Printed Page: 2 of 3
Subject Code: BCS402
Roll No:

BTECH


(SEM IV) THEORY EXAMINATION 2023-24 THEORY OF AUTOMATA AND FORMAL LANGUAGES

TIME: 3 HRS M.MARKS: 70

SECTION C

3. Attempt any *one* part of the following:

 $7 \times 1 = 7$

4. Attempt any *one* part of the following:

 $7 \times 1 = 7$

a. State Pumping Lemma for Regular Language. Show that the given language L={a^p | Where p is a prime} is not regular.
 b. Discuss closure properties (i.e. union, concatenation, complement, intersection and difference) of regular language.

5. Attempt any *one* part of the following:

 $7 \times 1 = 7$

1 :	LUCIII	pt any one part of the following.
	a.	Reduce the given grammar $G = (\{S, A, B\}, \{a, b\}, P, S)$ to Chomsky Normal
		form. Where P is defined by:
		S →bA aB
		$A \rightarrow bAA \mid aS \mid a$
		B →aBB bS b
	b.	Design a CFG for the following language:
		(i) $L = \{0^m 1^n \mid m \neq n \& m, n \ge 1\}$
		(ii) L= $\{a^p b^q c^r \mid p+q=r \& p, q>=1\}$

6. Attempt any *one* part of the following:

 $7 \times 1 = 7$

a.	Construct PDA equivalent to the following CFG $G = (\{S, A\}, \{0,1\}, P, S\}$
	where P is defined by:
	$S \rightarrow 0S1 \mid A$
	$A \rightarrow 1A0 \mid S \mid \varepsilon$

ii.

Printed Page: 3 of 3 **Subject Code: BCS402 Roll No:**

BTECH (SEM IV) THEORY EXAMINATION 2023-24 THEORY OF AUTOMATA AND FORMAL LANGUAGES

TIME: 3 HRS **M.MARKS: 70**

b.	Find the equivalent CFG of the following PDA
	$P = (\{q0, q1,\}, \{a, b\}, \{a, z0\}, \delta, q0, z0)$ where δ is given by:
	$\delta (q0, a, z0) = (q0, az0)$
	$\delta(q0, a, a) = (q1, aa)$
	$\delta(q1, a, a) = (q1, \varepsilon)$
	$\delta(q1, \varepsilon, z0) = (q1, \varepsilon)$

7. Attempt any *one* part of the following: $7 \times 1 = 7$

- Construct Turing Machine that accepts language $L=\{a^{2n}b^n \mid n>=1\}$. Also show the instantaneous description for the string w = aaaabb. Explain the any two of the following: b. Universal Turing Machine. i. Post Correspondence Problem.
 - Recursive and recursively Enumerable Languages iii.

21.Aug.22A, 33.08 PM 182.19.215.15