				Sub	oject	Coo	de: I	3CE	403	
Roll No:										

BTECH (SEM IV) THEORY EXAMINATION 2023-24 HYDRAULIC ENGINEERING AND MACHINES

TIME: 3 HRS M.MARKS: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 7 = 14$

Printed Page: 1 of 2

Q no.	Question	Marks	СО
a.	What is the most economical channel section condition?	2	1
b.	What is the application of specific energy?	2	1
c.	What is the principle of hydraulic jump?	2	2
d.	Write the impact of jets on plane and curved plates.	2	3
e.	What is the difference between deep and shallow-water waves?	2	4
f.	Write the classifications of turbines according to direction of flow.	2	4
g.	What is the difference between impulse and reaction turbine?	2	5

SECTION B

2. Attempt any *three* of the following:

 $7 \times 3 = 21$

a.	Find the critical depth for a specific energy head of 2.5 m in the following	7	1
	channels. (i) Triangular channel n = 2	0'	
	(ii) Trapezoidal channel $b = 4m$ and $n = 1.5$	a'V	
b.	Derive the equations of GVF for a wide rectangular channel using (a)	70	2
	Manning's formula (ii) Chezy's formula		
c.	Give the neat sketches of classifications of jump based on Froude number F ₁ of	7	3
	super critical flow.		
d.	Draw neat sketch of velocity triangles for an impeller vane and write important	7	4
	terms with their relation involve in velocity triangles.		
e.	A Pelton turbine develops 8421 kw of shaft power under a head of 320 m. Speed	7	4
	of rotation of wheel is 700 rpm and its overall efficiency is 87%. Assuming		
	coefficient of velocity of jet 0.98, speed ratio as 0.45 and jet ratio as 6, find the		
	wheel diameter, diameter of jet and the number of jets required.		

SECTION C

3. Attempt any *one* part of the following:

 $7 \times 1 = 7$

a.	Water flows through a circular channel of diameter 600 mm at the rate of 0.142	7	1
	m ³ /s. If the slope of the channel is 1 in 500 and the depth of water is 450 mm,		
	calculate Chezy's coefficient and the velocity of flow.		
b.	An irrigation channel of trapezoidal section has side slope of 1.5 horizontal to	7	1
	1 vertical and bed slope of 1 in 4000. The channel has passed a discharge of 15		
	m ³ /s the channel is to lines for which the value of N in Operating formula is		
	0.012. Find the dimension of most economical section of the channel.		

4. Attempt any *one* part of the following:

 $7 \times 1 = 7$

a.	A flow of 5.0 m ³ /sec is passing at a depth of 1.50 through a rectangular	7	2
	Channel of width 2.50 m. What is the specific energy of the flow? What is the		
	value of the alternate depth to the existing depth?		
b.	Sketch the GVF profile for the following cases three slopes (i) Mild (ii) Steeper	7	2
	mild (iii) milder are in series. The last slope has a sluice gate in the middle of		
	the reach and the downstream end of the channel has a free overfall.		

				Subject Code: BCE4						,
Roll No:										Ì

Printed Page: 2 of 2

BTECH (SEM IV) THEORY EXAMINATION 2023-24

ME:	HYDRAULIC ENGINEERING AND MACHINES 3 HRS M.M	IARKS	: 70
5.	Attempt any <i>one</i> part of the following: 7 x 1 =	= 7	
a.	Find the sequent depth ratio and energy loss for a hydraulic jump in a horizontal rectangular channel.	7	3
b.	A rectangular channel 3m wide has a flow of 3.6 m3/s with the velocity of 0.8 m/s. If the sudden release of additional flow at the upstream end of the channel causes the depth to raise by 50%. Determine the absolute velocity of the resulting surge and the new flow rate,	7	3
·	Attempt any <i>one</i> part of the following: $7 \times 1 =$	= 7	
a.	With neat diagram find out the forces of jet on a stationary vertical plate.	7	4
b.	Find out the vane angle at the outer periphery of the impeller of a centrifugal pump. Data given Q= $0.118 \text{ m}^3/\text{s}$, N= 1400 rpm , H _m = 25 m ., D2= 250 mm , $\eta_{\text{mano}} = 75\%$, B2= 0.05 m	7	4
7.	Attempt any <i>one</i> part of the following: 7 x 1 =	= 7	
a.	Derive an expression for specific speed of a turbine. How does it influence the geometry of runner?	7	5/
b.	What do you understand by model testing of turbines? Also, explain their three	7	5
	OP2AFER MARINASS.		
	202A V. 353		
	23-Ano. 2024 V. 13		