

				Sur	ojeci	CO	ae: 1	KAS	203
Roll No:									

BTECH (SEM II) THEORY EXAMINATION 2023-24 ENGINEERING MATHS-II

TIME: 3 HRS M.MARKS: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 7 = 14$

Printed Page: 1 of 2

Q no.	Question	Marks	CO
a.	Find order and degree of the equation $\left(\frac{d^3y}{dx^3}\right)^4 - \left(\frac{dy}{dx}\right)^3 = 0$.	2	1
b.	Find the particular integral of $(\mathbf{D^2} + 6\mathbf{D} + 5)y = 4\mathbf{e^{-x}}$	2	1
c.	Write the value of $J_{-1/2}$ (x).	2	2
d.	Find the Laplace Transform of unit step function u(t-a).	2	3
e.	Find the constant term if $f(x) = x+x^2$ is expanded in Fourier series defined in (-1, 1).	2	4
f.	Classify the equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$.	2	5
g.	Write two dimension heat equation and its solution.	2	5

SECTION B

2. Attempt any *three* of the following:

 $7 \times 3 = 21$

Q no.	Question	Marks	CO
a.	Solve: $(D^2 - 2D + 5) y = e^{2x} \cos x$.	7	1
b.	State and prove Rodrigue's formula for Legendre,s polynomials	7	2
c.	Find the Laplace transform of $\frac{\cos at - \cos bt}{t}$.	7	3
d.	Find the half range Fourier sine series $f(x) = x^2$ in $0 < x < 1$.	7	4
e.	Find the displacement of a finite string of length 'l' that is fixed at both end and	7	5
	released from rest with an initial displacement f(x).		

SECTION C

3. Attempt any *one* part of the following:

 $7 \times 1 = 7$

Q no.	Question	Marks	CO
a.	Solve the following simultaneous differential equation: $\frac{dx}{dt} + 5x - 2y = t, \frac{dy}{dt} + 2x + y = 0$	7	1
b.	Solve by method of variation of parameter $\frac{d^2y}{dt^2} - 3\frac{dy}{dt} + 2y = \frac{e^t}{1 + e^t}$.	7	1

4. Attempt any *one* part of the following:

 $7 \times 1 = 7$

Q no.	Question	Marks	CO
a.	Show that $n P_n(x) = x P'_n(x) - P_{n-1}'(x)$.	7	2
b.	Find the series solution of the following differential equation using Frobenius	7	2
	method $2x^2 \frac{d^2y}{dx^2} + 7x(x+1) \frac{dy}{dx} - 3y = 0$.		

				Sub	oject	Co	de: l	RAS	3203
Roll No:									

BTECH (SEM II) THEORY EXAMINATION 2023-24 ENGINEERING MATHS-II

TIME: 3 HRS M.MARKS: 70

5. Attempt any *one* part of the following:

7	\mathbf{X}	1	=	7

Printed Page: 2 of 2

Q no.	Question	Marks	СО
a.	Find inverse Laplace transform of $\frac{1}{p(p^2-a^2)}$.	7	3
b.	Use convolution theorem to find the inverse Laplace transform of $\frac{p}{(p^2+a^2)^2}$.	7	3

6. Attempt any *one* part of the following:

$7 \times 1 = 7$

Q no.	Question	Marks	CO
a.	Solve ($\mathbf{D^2} - D\mathbf{D'} - 2\mathbf{D'^2} + 2\mathbf{D'} + 2\mathbf{D}$) $z = \sin(2x + y)$.	7	4
b.	Expand $f(x) = x \cos x$ as Fourier series in $-\pi < x < \pi$.	7	4

7. Attempt any *one* part of the following:

$7 \times 1 = 7$

Q no.	Question	Marks	CO
a.	Solve by Method of separation of variable: $y^3 \frac{\partial u}{\partial x} = x^2 \frac{\partial u}{\partial y}$.	7	5
b.	Find the temperature distribution in a rod of length of 2m whose ends are fixed at temperature zero and initial temperature distribution is $f(x) = 100x$.	7/9	5
	OR 2A19:202A 9:05:28 ANN 1 18	52.	
	06-RUO; L		