

Roll No: Subject Code: KAS203

BTECH (SEM II) THEORY EXAMINATION 2023-24 MATHEMATICS II

TIME: 3 HRS M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

Printed Page: 1 of 2

Q no.	Question	Marks	CO
a.	Find order and degree of the equation $\left(\frac{d^3y}{dx^3}\right)^4 - 6x^2\left(\frac{dy}{dx}\right)^8 = 0$.	02	1
b.	Solve $(4D3 + 4D2 + D)y = 0.$	02	1
c.	What is the value of $\Gamma(1/2)$?	02	2
d.	Evaluate $\int_0^\infty e^{-x} x^{n-1} dx$.	02	2
e.	Find the limit of $a_n = (n !)^{1/n}$.	02	3
f.	Find the constant term if the function $f(x) = x+x^2$ is expanded in Fourier series defined in (-1, 1).	02	3
g.	Define Harmonic function.	02	4
h.	Describe analytic function with example.	02	4
i.	Define Laurent's series.	02	5
j.	Find the Residue of $\frac{z^2}{(z-1)(z-2)^2}$ at $z=2$.	02	5

SECTION B

2. Attempt any *three* of the following:

 $3 \times 10 = 30$

Q no.	Question	Marks	CO
a.	Solve by method of variation of parameter $\frac{d^2y}{dt^2} - 3\frac{dy}{dt} + 2y = \frac{e^t}{1+e^t}$.	10	1
b.	Prove that $\beta(m,n) = \frac{\Gamma m \Gamma n}{\Gamma(m+n)}$	10	2
c.	Test the convergence of the series $1 + \frac{2}{5}x + \frac{6}{9}x^2 + \frac{14}{17}x^3 + \dots$	10	3
d.	Show that the function $u(x, y) = 4xy-3x+2$ is harmonic.	10	4
e.	Evaluate $\int \frac{e^z}{(z-1)(z-4)} dz$ where C is the circle $ z = 2$ by using Cauchy's	10	5
	Residue theorem.		

SECTION C

3. Attempt any *one* part of the following:

 $1 \times 10 = 10$

Q no.	Question	Marks	CO			
a.	Solve the following simultaneous differential equation:					
	$\frac{dx}{dt}$ +x -2y=0, $\frac{dy}{dt}$ +x +4y=0.					
b.	Solve $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 5y = x e^{x}$	10	1			

				Sub	ject	Coc	de: 1	(A)	203
Roll No:									

BTECH (SEM II) THEORY EXAMINATION 2023-24 MATHEMATICS II

TIME: 3 HRS M.MARKS: 100

4. Attempt any *one* part of the following:

1		10	_	10
1	Х	10	=	10

Printed Page: 2 of 2

Q no.	Question	Marks	CO
a.	Evaluate the area enclosed between the parabola $y = x^2$ and the straight	10	2
	line $y = x$.		
b.	Apply Dirichlet integral to find the volume of an octane of the ellipsoid	10	2
	$\left(\frac{x^2}{a^2}\right) + \left(\frac{y^2}{b^2}\right) + \left(\frac{z^2}{c^2}\right) = 1.$		

5. Attempt any *one* part of the following:

$1 \times 10 = 10$

Q no.	Question	Marks	CO	
a.	Find the half range Fourier sine series $f(x)$ defined over the range $0 < x < 4$	10	3	
	as $f(x) = \begin{cases} x, 0 < x < 2 \\ 4 - x, 2 < x < 4 \end{cases}$			
b.	Test the convergence of the series: $\frac{x}{1} + \frac{1}{2} \frac{x^3}{3} + \frac{1}{24} \frac{3}{5} + \frac{1}{24} \frac{3}{6} \frac{5}{7} + \cdots$.	10	3	4

6. Attempt any *one* part of the following:

$1 \times 10 = 10$

Question	. 9	Marks	CO
Find the points where C-R equation satisfies for the function		10	4
$f(z) = xy^2 + i x^2 y.$			
Find Harmonic conjugate of $v = log (x^2 + y^2) + x - 2y$.	U,	10	4
	Find the points where C-R equation satisfies for the function $f(z) = xy^2 + i x^2 y$.	Find the points where C-R equation satisfies for the function $f(z) = xy^2 + i x^2 y$.	Find the points where C-R equation satisfies for the function $f(z) = xy^2 + i x^2 y$.

7. Attempt any *one* part of the following:

$1 \times 10 = 10$

Q no.	Question	Marks	CO
a.	Expand $\frac{1}{z^2-3z+2}$ in the given region:	10	5
	(i). $ z-1 < 1$ (ii). $1 < z < 2$.		
b.	Evaluate $\int \frac{z^2}{(z-1)^2(z+2)} dz$ where C is the circle $ z = 3$ by using Cauchy's integral formula.	10	5