

	 			Sub	ject	Coc	de: l	KEE	2601
Roll No:									

Printed Page: 1 of 2

BTECH (SEM VI) THEORY EXAMINATION 2023-24 **POWER SYSTEM-II**

TIME: 3 HRS **M.MARKS: 100**

Note: 1. Attempt all Sections. If require any missing data; then choose suitably. **SECTION A**

Attempt all questions in brief. 1.

a.	What is the need of sequence components?	02
b.	What are the advantages of per unit system?	02
c.	What do you understand by load flow analysis?	02
d.	Outline the need for slack bus?	02
e.	What is meant by voltage surge?	02
f.	What do you mean by characteristic impedance loading?	02
g.	Discuss steady state and transient stability?	02
h.	What do you mean by stability limit?	02
i.	Explain various types of faults.	02
j.	Discuss the need power system protection?	02

SECTION B

2. Attempt any three of the following:

a.	Draw the per unit impedance & reactance diagram for the power system shown below. Neglect resistance and use a base of 50 MVA, 220 kV in 100 Ω line. The rating of generator, transformers and motor are shown in Fig. Generator Bus 1 Bus 2 Motor									
		Generator	500 MVA	25 kV	X" = 20 %					
		Motor	200 MVA	11 kV	X" = 30 %					
		Transformer (Y-Y)	300 MVA	33Y / 220Y kV	X = 15 %					
		Transformer $(Y-\Delta)$	300 MVA	11Δ / 220Y kV	X = 15 %					
b.	Deve	lop and explain the lo	ad flow equa	tion by Gauss- Siddl	e Method.	10				
c.	Explain the Bewley's Lattice diagram. Write a note on surge phenomenon. Define the protection against over voltages.									
d.	Explain equal area criterion for stability by taking a suitable example of power system.									
e.	-	ain the working princ tion with a suitable ?	-	<u>-</u>	-					

	 		 	Sub	ject	Coc	de: l	KEE	2601
Roll No:									

Printed Page: 2 of 2

BTECH (SEM VI) THEORY EXAMINATION 2023-24 POWER SYSTEM-II

TIME: 3 HRS M.MARKS: 100

SECTION C

3. Attempt any *one* part of the following:

a.	Two generators rated at 10 MVA, 13.2KV and 15MVA, 13.2KV, respectively	10
	are connected in parallel to a bus. The bus feeds two motors rated at 8MVA and	
	12MVA respectively. The rated voltage of motors is 12.5 KV. The reactance of	
	each generator is 15% and that of each motor 20% on its own rating. Assume	
	50MVA, 13.8KV base and draw reactance diagram.	
b.	Derive the relationship to determine the fault current for a single line to ground	10
	fault. Draw and equivalent network showing the interconnection of sequence	
	network to stimulate LG fault.	

4. Attempt any *one* part of the following:

a.	What is Newton-Raphson method? How it is applied for the solution of power	10
	flow equation?	
b.	Define different types of buses in a power system. Find the bus admittance	10
	matrix for the given network in Fig	
	-j0.6	0.
	2	
	-j0.4) *
	-j0.5 [] -j0.5	
	-j0.4	
	1 C 4	

5. Attempt any *one* part of the following:

a.	A 300 KV, 5 μ Sec rectangular surge travels along the line terminated by a	10						
	capacitor of 1500pF. Determine the voltage across the capacitance and reflected							
	voltage wave if the surge impedance loading of line is 300 ohm.							
b.	Deduce the general wave equations for a loss less transmission line for	10						
	propagation of voltage and current wave.							

6. Attempt any *one* part of the following:

a.	Explain the swing equation for a machine connected to an infinite bus. If a synchronous generator is of 100MVA have inertia constant of 20MJ/MVA. Find the angular momentum.	
b.	Explain step by step method of system stability with suitable diagrams.	10

7. Attempt any *one* part of the following:

a.	Explain in detail the operation of an Overcurrent Relay and Distance Protection,							
	accompanied by a neat diagram?							
b.	Define following:	10						
	(i) Recovery Voltage (ii) Active recovery Voltage							
	(iii) Restriking Voltage (iv) RRRV							