

				Sub	ject	Coc	ie: r	LEC	002
Roll No:									

Printed Page: 1 of 3

BTECH (SEM VI) THEORY EXAMINATION 2023-24 CONTROL SYSTEM

TIME: 3 HRS M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1.	Attempt all questions in brief.	2 x 10	=20
Q no.	Question	Marks	СО
a.	What is the difference between an open and closed loop system?	2	1
b.	In most of the cases, disturbances are introduced in process in closed loop control system. Why?	2	1
c.	What are the conditions for a system to be controllable?	2	2
d.	What are the advantages of state-space model over transfer function?	2	2
e.	What is the advantage of calculating overshoot control system?	2	3
f.	What is the difference between fall time and rise time?	2	3
g.	How location of poles is related to stability?	2	4
h.	How is departure angle measured?	2	4
i.	What is the significance of gain and phase margin?	2	5
j.	What is the significance of polar coordinates?	2	5

SECTION B

2. Attempt any three of the following:

		10	4
a.	Obtain the Transfer function of the given block diagram	10	1
		5.	
)	
	G ₄		
	R(s) C(s)		
	H ₂		
	_ (
1.	Devices a 444 and a 116 a 41 and a 11 and 11 and 12 and 13 and 14 and 15	10	2
b.	Derive a state space model for the system shown. The input is τa and	10	2
	the output is θ_1 .		
	θ_1 θ_2		
	4 K. V.		
	$\begin{pmatrix} \begin{pmatrix} \begin{pmatrix} J_1 \end{pmatrix} \end{pmatrix} \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} J_2 \end{pmatrix} \end{pmatrix}$		
	$A \wedge A = A + A + A + A + A + A + A + A + A +$		
	T B		
	$\tau_a \xrightarrow{\text{WW}} B_{r2}$		

Roll No: Subject Code: KEC602

Printed Page: 2 of 3

BTECH (SEM VI) THEORY EXAMINATION 2023-24 CONTROL SYSTEM

TIME: 3 HRS M.MARKS: 100

c.	The open loop transfer function of a unity feedback system is given by	10	3
	$G(S) = \frac{K}{S(1+ST)}$		
	Where 'K' & 'T' are positive constants. By what factor should the amplifier gain be reduced so that the peak overshoot of unit step response of the system is reduced from 75% to 25%		
d.	Using Routh Hurwitz Criterion, discuss the stability of the characteristic equation: $2s^5 + 2s^4 + s^3 + 2s^2 + 2$	10	4
e.	What is gain margin, phase margin, gain crossover frequency, and phase cross frequency? What is the practical use of these parameters?	10	5

SECTION C

3. Attempt any *one* part of the following:

J.	Attempt any one part of the following.		
a.	Construct the signal flow graph for the following set of simultaneous equations and obtain the overall transfer function using Mason's gain	10	1
	formula. $X2 = A21X1 + A23X3$		2
	X2 - A21X1 + A23X3 X3 = A31X1 + A32X2 + A33X3 X4 = A42X2 + A43X3	210) *
b.	Reduce the block diagram to its canonical form and obtain C(S)/R(S).	10	1
	G_{5} G_{1} G_{2} G_{3} G_{4} G_{4} G_{5} G_{4} G_{5} G_{4} G_{5} G_{4} G_{5} G_{5		

4. Attempt any *one* part of the following:

a.	For a single input system	10	2
	$\dot{X} = AX + BU$		
	Y = CX		
	$A = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 1 \end{bmatrix}$		
	Check the controllability & observability of the system.		
b.	Examine the Controllability and Observability of the following system:	10	2
	$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} B = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} C = \begin{bmatrix} 10 & 5 & 1 \end{bmatrix}$		

				Sub	ject	Coc	de: F	KEC	C602
Roll No:									

Printed Page: 3 of 3

BTECH (SEM VI) THEORY EXAMINATION 2023-24 CONTROL SYSTEM

TIME: 3 HRS M.MARKS: 100

5. Attempt any *one* part of the following:

a.	Consider a standard second order system given by	10	3
	$rac{w_n^2}{s^2+2\zeta w_n s+w_n^2}$		
	The correlation between the maximum peak overshoot in the time domain and the resonant peak in the frequency domain exists when:		
b.	The output of a standard second-order system for a unit-step input is given as	10	3
	$y(t) = 1 - rac{2}{\sqrt{3}}e^{-t}\cos\left(\sqrt{3}t - rac{\pi}{6} ight)$		
	What is the transfer function of the system?		

6. Attempt any *one* part of the following:

	1 7 1 8	
a.	Using Routh Hurwitz Criterion, discuss the stability of the characteristic 10 4	
	equation:	
	$F(s) = 2s^5 + 3s^4 + 2s^3 + s^2 + 2s + 2$	
b.	Consider a unity-feedback control system with the following 10 4	
	feedforward transfer function:	
	K	
	$G(s) = \frac{1}{s(s+1)(s+2)}$	
	s(s+1)(s+2)	
	D 1 1 1 1 1 1	
	Draw plot the root locus.	

7. Attempt any *one* part of the following:

7.	Attempt any one part of the following:		
a.	Sketch the Bode Plot for the given system and comment on stability of the used	10	5
	systems:		
	$G(s)H(s) = \frac{4}{s}$		
	$G(s)H(s) = \frac{1}{s(1+0.5s)(1+0.08s)}$		
b.	Construct the Bode plots for a unity feedback system whose open-loop	10	5
	transfer function is given by $[0.25(1+0.5s)]/[s(1+2s)(1+4s)]$.		
	From the Bode plot, determine the following:		
	a) Gain and phase crossover frequencies,		
	b) Gain and phase margin, and		
	c) Comment on the stability of the system.		