

|          |  |  | <br> | S | Subj | ect | Cod | le: ŀ | <b>SEC</b> | C601 |
|----------|--|--|------|---|------|-----|-----|-------|------------|------|
| Roll No: |  |  |      |   |      |     |     |       |            |      |

Printed Page: 1 of 2

# BTECH (SEM VI) THEORY EXAMINATION 2023-24 DIGITAL COMMUNICATION

TIME: 3 HRS M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

#### **SECTION A**

| 1. Attempt all | questions | in brief. |
|----------------|-----------|-----------|
|----------------|-----------|-----------|

| a. | State properties of pdf.                                                                | 02 |
|----|-----------------------------------------------------------------------------------------|----|
| b. | Discuss about complete probability scheme.                                              | 02 |
| c. | Describe Eye diagram.                                                                   | 02 |
| d. | Illustrate roll-off factor in pulse shaping.                                            | 02 |
| e. | Discuss the disadvantages of coherent demodulation schemes.                             | 02 |
| f. | Discuss the disadvantages of non-coherent FSK.                                          | 02 |
| g. | Illustrate the term spread spectrum and its advantages.                                 | 02 |
| h. | Compare ASK, FSK, and PSK based on the probability of error performance.                | 02 |
| i. | Discuss the reason of using the logarithmic function for the measurement of information | 02 |
| j. | Appraise that the mutual information is symmetric in nature.                            | 02 |

#### **SECTION B**

#### 2. Attempt any three of the following:

| <u></u> | recempt any united the following.                                                                                      |    |
|---------|------------------------------------------------------------------------------------------------------------------------|----|
| a.      | Demonstrate random process. Illustrate the characteristics of the Strict sense stationary                              | 10 |
|         | process.                                                                                                               | NV |
| b.      | Discuss Duobinary signaling. Discuss the advantages of using it.                                                       | 10 |
| c.      | Describe ASK modulation and demodulation in detail.                                                                    | 10 |
| d.      | Illustrate FHSS with FSK modulation with the help of Transmitter and Receiver diagram. Discuss its disadvantages also. | 10 |
| e.      | Analyze the relations between different entropies. Also discuss physical interpretations of all entropies.             | 10 |

#### SECTION C

### 3. Attempt any *one* part of the following:

| Consider the general Gaussian PDF:                                                                                           | 10                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $P_{\rm x}(x) = \frac{1}{2\sqrt{2\pi}}e^{-(x-m)^2/2\sigma^2}$                                                                |                                                                                                                                                                                                                                                               |
| Determine the mean and variance.                                                                                             |                                                                                                                                                                                                                                                               |
| Discuss Wide sense stationary process. Determine whether the given random process is a wide sense stationary process or not? | 10                                                                                                                                                                                                                                                            |
| $X(t) = ACos(\omega t + \Omega)$                                                                                             |                                                                                                                                                                                                                                                               |
| Where, $\Omega$ is a uniformly distributed random variable between 0 to $2\Pi$ .                                             |                                                                                                                                                                                                                                                               |
|                                                                                                                              | $P_{\rm x}(x) = \frac{1}{2\sqrt{2\pi}}e^{-(x-m)^2/2\sigma^2}$ Determine the mean and variance.  Discuss Wide sense stationary process. Determine whether the given random process is a wide sense stationary process or not? $X(t) = ACos(\omega t + \Omega)$ |

## 4. Attempt any *one* part of the following:

| Ī | a. | Illustrate scrambling. Also describe the reason of using it. If the data stream is | 10 |
|---|----|------------------------------------------------------------------------------------|----|
|   |    | 101010100000111, Determine the scrambled output. Given                             |    |
|   |    | $F=D^3(XOR)D^5$                                                                    |    |
| Ī | b. | Derive expression for the PSD of Polar line codes.                                 | 10 |

## 5. Attempt any *one* part of the following:

| a. | Discuss DPSK modulation and demodulation in detail. | 10 | l |
|----|-----------------------------------------------------|----|---|
| b. | Discuss FSK modulation and demodulation in detail.  | 10 | l |

## 6. Attempt any *one* part of the following:

| a. | Analyze that the output signal of a matched filter is proportional to a shifted version of | 10 |
|----|--------------------------------------------------------------------------------------------|----|
|    | the Autocorrelation function of the input signal to which the filter is matched.           |    |
| b. | Derive an expression for the probability of error of PSK modulation.                       | 10 |



|          |  |  |  | S | Subj | ect | Cod | le: I | KEC | 601 |
|----------|--|--|--|---|------|-----|-----|-------|-----|-----|
| Roll No: |  |  |  |   |      |     |     |       |     |     |

Printed Page: 2 of 2

# BTECH (SEM VI) THEORY EXAMINATION 2023-24 DIGITAL COMMUNICATION

TIME: 3 HRS M.MARKS: 100

7. Attempt any *one* part of the following:

|   | a. | A memoryless so   | ource emits six messages with probability 0.3, 0.25, 0.15, 0.12, 0.1 | 10 |
|---|----|-------------------|----------------------------------------------------------------------|----|
|   |    | and 0.08. Here, N | M=2.                                                                 |    |
|   |    | 1. Find the binar | y Huffman code.                                                      |    |
|   |    | 2. Determine its  | average word length, efficiency and redundancy                       |    |
| Ī | b. | Design (2,1,2) C  | onvolutional encoder.                                                | 10 |

15-Jun-2024 9:06: AA AM 103.2A8 1.20.2A3